Evolutionary rescue can maintain an oscillating community undergoing environmental change.
نویسندگان
چکیده
The persistence of ecological communities is challenged by widespread and rapid environmental change. In many cases, persistence may not be assured via physiological acclimation or migration and so species must adapt rapidly in situ. This process of evolutionary rescue (ER) occurs when genetic adaptation allows a population to recover from decline initiated by environmental change that would otherwise cause extirpation. Community evolutionary rescue (CER) occurs when one or more species undergo a rapid evolutionary response to environmental change, resulting in the recovery of the ancestral community. Here, we study the dynamics of CER within a three-species community coexisting by virtue of resource oscillations brought about by nonlinear interactions between two species competing for a live resource. We allowed gradual environmental change to affect the traits that determine the strength and symmetry of the interaction among species. By allowing the component species to evolve rapidly, we found that: (i) trait evolution can allow CER and ensure the community persists by preventing competitive exclusion during environmental change, (ii) CER brings about a change in the character of the oscillations (period, amplitude) governing coexistence before and after environmental change, and (iii) CER may depend on evolutionary change that occurs simultaneously with or subsequently to environmental change. We were able to show that a change in the character of community oscillations may be a signature that a community is undergoing ER. Our study extends the theory on ER to a world of nonlinear community dynamics where-despite high-frequency changes of population abundances-adaptive evolutionary trait change can be gradual and directional, and therefore contribute to community rescue. ER may happen in real, complex communities that fluctuate owing to a mix of external and internal forces. Experiments testing this theory are now required to validate our predictions.
منابع مشابه
The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps
Rapid environmental change is predicted to compromise population survival, and the resulting strong selective pressure can erode genetic variation, making evolutionary rescue unlikely. Non-genetic inheritance may provide a solution to this problem and help explain the current lack of fit between purely genetic evolutionary models and empirical data. We hypothesize that epigenetic modifications ...
متن کاملIndirect evolutionary rescue: prey adapts, predator avoids extinction
Recent studies have increasingly recognized evolutionary rescue (adaptive evolution that prevents extinction following environmental change) as an important process in evolutionary biology and conservation science. Researchers have concentrated on single species living in isolation, but populations in nature exist within communities of interacting species, so evolutionary rescue should also be ...
متن کاملEvolutionary rescue in structured populations.
Environmental change, if severe, can drive a population extinct unless the population succeeds in adapting to the new conditions. How likely is a population to win the race between population decline and adaptive evolution? Assuming that environmental degradation progresses across a habitat, we analyze the impact of several ecological factors on the probability of evolutionary rescue. Specifica...
متن کاملEvolutionary rescue in vertebrates: evidence, applications and uncertainty.
The current rapid rate of human-driven environmental change presents wild populations with novel conditions and stresses. Theory and experimental evidence for evolutionary rescue present a promising case for species facing environmental change persisting via adaptation. Here, we assess the potential for evolutionary rescue in wild vertebrates. Available information on evolutionary rescue was ra...
متن کاملThe genetics of phenotypic plasticity. XV. Genetic assimilation, the Baldwin effect, and evolutionary rescue
We used an individual-based simulation model to examine the role of phenotypic plasticity on persistence and adaptation to two patterns of environmental variation, a single, abrupt step change and continual, linear change. Our model tested the assumptions and predictions of the theory of genetic assimilation, explored the evolutionary dynamics of the Baldwin effect, and provided expectations fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Interface focus
دوره 3 6 شماره
صفحات -
تاریخ انتشار 2013